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Abstract
Objective. Implanted devices providing real-time neural activity classification and control are
increasingly used to treat neurological disorders, such as epilepsy and Parkinson’s disease.
Classification performance is critical to identifying brain states appropriate for the therapeutic
action (e.g. neural stimulation). However, advanced algorithms that have shown promise in offline
studies, in particular deep learning (DL) methods, have not been deployed on resource-restrained
neural implants. Here, we designed and optimized three DL models or edge deployment and
evaluated their inference performance in a case study of seizure detection. Approach. A deep neural
network (DNN), a convolutional neural network (CNN), and a long short-term memory (LSTM)
network were designed and trained with TensorFlow to classify ictal, preictal, and interictal phases
from the CHB-MIT scalp EEG database. A sliding window based weighted majority voting
algorithm was developed to detect seizure events based on each DL model’s classification results.
After iterative model compression and coefficient quantization, the algorithms were deployed on a
general-purpose, off-the-shelf microcontroller for real-time testing. Inference sensitivity, false
positive rate (FPR), execution time, memory size, and power consumption were quantified.
Main results. For seizure event detection, the sensitivity and FPR for the DNN, CNN, and LSTM
models were 87.36%/0.169 h−1, 96.70%/0.102 h−1, and 97.61%/0.071 h−1, respectively. Predicting
seizures for early warnings was also feasible. The LSTMmodel achieved the best overall
performance at the expense of the highest power. The DNN model achieved the shortest execution
time. The CNN model showed advantages in balanced performance and power with minimum
memory requirement. The implemented model compression and quantization achieved a
significant saving of power and memory with an accuracy degradation of less than 0.5%.
Significance. Inference with embedded DL models achieved performance comparable to many
prior implementations that had no time or computational resource limitations. Generic
microcontrollers can provide the required memory and computational resources, while model
designs can be migrated to application-specific integrated circuits for further optimization and
power saving. The results suggest that edge DL inference is a feasible option for future neural
implants to improve classification performance and therapeutic outcomes.

1. Introduction

Many brain injuries and diseases may be treated by
implanted devices that provide real-time classifica-
tion of neural activity to produce a suitable con-
trol output. For example, closed-loop neuromod-
ulatory devices control neural activity classified as

pathological with electrical stimulation to treat epi-
lepsy and Parkinson’s disease [1]. Brain-machine
interface (BMI) devices classify volitional intent
to control external communication or movement
devices for paralyzed individuals [2]. In both cases,
the neural implants record brain activity, select
and extract relevant activity features, and perform
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classification and control on the basis of these
features.

Performance of these devices is largely dependent
on the feature selection and classification algorithms.
Feature selection aims to transform the often noisy,
correlated signals from many recording channels
into a few non-redundant, informative inputs to
the machine learning classifier. Feature selection is
often a manually-specified, time-consuming pro-
cess that requires substantial domain expertise [3].
Furthermore, current implantable devices such as
the NeuroPace RNS and Medtronic Activa PC+S
closed-loop neurostimulators have restrained com-
putation resources. Thus, only simple classification
algorithms, such as feature thresholding or linear dis-
criminant analysis, have been implemented [4].

Deep learning (DL) is a machine learning
algorithm that has recently been applied to research-
grade, non-implantable neural interface devices to
improve performance [5]. Specifically, DL combines
feature extraction, feature selection, and classifica-
tion into a single framework, jointly optimizing the
end-to-end process [6].When sufficient training data
is available [7], DL can achieve superior performance
compared tomore conventional algorithms [8], espe-
cially in distinguishing hidden features critical for
classification [9]. Furthermore, the DL approach is
robust andmore generalizable across different applic-
ations [3]. Although numerous DL approaches for
neural interface devices have been studied, nearly all
have done so offline [7]. While DL training is com-
putationally intensive and likely to remain offline,
DL inference must be performed online for real-
time control. This is a particularly challenging prob-
lem for clinical-grade devices operating on battery-
powered microprocessors or integrated circuits
with limited computational resources and energy
budget.

To implement real-time DL inference for clinical
neural implants, three paradigms have been proposed
(figure 1, left). First, inference can be done remotely
through cloud computing (Paradigm A) [4]. In this
paradigm, the neural implant transmits the recorded
data to a wearable device via local wireless commu-
nication, and the wearable device in turn uploads the
data to a cloud-based workstation via internet or tele-
communication. The cloud-based inference result is
downloaded wirelessly back to the wearable device
and then to the neural implant for producing the con-
trol output (e.g. neural stimulation). Second, infer-
ence can be done on the wearable device without
the need for data transfer to a cloud-based platform
(Paradigm B) [10]. Third, DL inference can be per-
formed directly on the neural implant itself, requir-
ing no data transfer to another device (Paradigm C)
[11]. Each of these three inference paradigms has its
strengths and weaknesses (figure 1, right). Although

the cloud computing in Paradigm A offers the best
possible inference accuracy, the latency and the
robustness are the worst, which can adversely effect
the timing-critical closed-loop therapeutic interven-
tion. There are also concerns about cybersecurity
and data privacy due to the required data transfer
via internet or telecommunication [12]. Paradigm B
eliminates the dependence on remote data transfer
and the associated concerns, but it still relies on the
robustness and security of the local wireless commu-
nication between the wearable devices and the neural
implants. Moreover, the inference model complex-
ity will be limited by the computational and power
resources of the wearable devices. Paradigm C, using
edge computing [13], avoids the disadvantages and
concerns of wireless communication and can there-
fore potentially achieve the best robustness, the lowest
latency, and theminimum security risks. Even if occa-
sional wireless data transfer is performed in Paradigm
C for offline analysis and performance assessments,
the therapy itself would be robust to data transfer
disruption and the opportunity for malicious attack
would be the smallest of the three paradigms due
to infrequency of transmission. However, a major
question regarding Paradigm C is whether an edge
DL model can achieve desired inference perform-
ance. Although machine learning-enabled processors
for neural implants have been reported [14, 15], DL
models have only rarely been implemented [11, 16,
17]. Therefore, the objective of the present work was
to evaluate the inference performance limitations and
resource constraints of edge DL designs through a
case study.

For a DL model to be successfully deployed on
a neural implant for real-time inference, the model
design needs to meet three requirements. First, the
model’s inference performance (e.g. accuracy, sens-
itivity, specificity, etc) should meet the require-
ments of the target application, including potential
degradation from model compression and quant-
ization. Second, the model’s inference time should
meet the latency requirement, especially in closed-
loop applications. This not only requires a suffi-
cient computational speed, but also limits the max-
imum length of the buffered input data segment, res-
ulting in a constraint on the model’s architecture.
Third, the power and resource costs of the DL model
should meet the budget of the neural implant. For
instance, the available memory resources, both non-
volatile storage memory and random access memory
(RAM), limit the total number of trainable model
parameters.

Potential hardware platforms for neural implants
with edge DL include dedicated AI accelerators and
general-purpose low-power processors. Dedicated AI
accelerators provide higher energy efficiency than
general-purpose processors. However, commercially
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Figure 1. Left: illustration of three paradigms for executing deep learning inference. Paradigm A: DL inference on the cloud via
internet or telecommunication. Paradigm B: DL inference on the wearable device via local wireless communication. Paradigm
C: DL inference directly on the neural implants without any data transfer. Right: the qualitative strengths and weaknesses of each
paradigm.

available AI accelerators, such as IBM’s TrueNorth
[18], Google’s Edge TPU [19], and Intel’s Loihi [20],
are too power hungry for neural implants. Also,
large volume mobile devices-oriented AI intellectual
property cores are not easily accessible for research-
grade prototyping [21]. Ultra low-power AI acceler-
ator chips have mainly been developed in research
labs [22–24]. On the other hand, general-purpose
low-power processors, such as ARM Cortex®, Texas
Instruments MSP430®, and open-source reduced
instruction set computer (RISC)-based microcon-
trollers (MCUs) provide a solution for low-cost, rapid
prototyping for medical research and pre-clinical tri-
als. If a further reduction in power or device footprint
is desired, the MCU-based design can be migrated to
an application-specific integrated circuit (ASIC) by
integrating theMCUcore togetherwith analog neural
recording and stimulation circuits, with an optional
wireless communication module [14, 25]. Thus, in
this work, we focused on edge DL design using a
general-purpose MCU.

To investigate DL design and optimization
methods fulfilling practical requirements of neural
implants, we conducted a case study of epileptic
seizure detection. Real-time seizure detection and
intervention through closed-loop neural stimulation
has proven to be an effective treatment for medically-
refractory epilepsy [26]. Due to the importance of
accurate, low-latency detection by a battery-powered
neural implant, this application could benefit from
edge computing. We adopted three commonly used
DL architectures and customized the design for
seizure detection on a MCU. We validated the meth-
ods using a publicly available annotated epilepsy
database. The models were trained offline using
Tensorflow. Compression and quantization meth-
ods were investigated for reducing the computational

cost, memory, and power consumption for real-time
inference. The inference results were compared to
prior publications with no time and computational
resource limitations. The strengths and weaknesses
of each model were analyzed. Finally, we discuss
the remaining challenges and future efforts toward
implementing this novel paradigm in clinical neural
implants.

2. Methods

2.1. Data preparation
This study used the Boston Children’s Hos-
pital (CHB)-MIT scalp electroencephalography
(EEG) database [27], which is publicly available at
PhysioNet.org [28]. Although scalp EEG is incon-
sistent with signals utilized by real neural implants,
the CHB-MIT database is one of the most popular
epilepsy data sets used for benchmarking, allowing a
fair performance comparison between our edge DL
approach and prior methods. The database contains
recordings collected from 23 pediatric patients with
intractable epilepsy. The placement of the surface
electrodes followed the international 10–20 system
[29]. The original recordings were sampled at 256
Hz and 16-bit resolution, with a 60 Hz notch filter
applied for removing the mains interference. The
seizure start and stop time points for each patient
were manually annotated by clinical experts. Chan-
nels that were not constantly available throughout the
entire duration in each case were excluded in devel-
oping the algorithms, as suggested in [9]. No signal
processing was used before training and testing the
models.

Data segments during ictal, preictal, and inter-
ictal phases were selected for training the DL mod-
els. The ictal phases were well defined by the expert
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Figure 2. Simplified diagrams of the three DL models used in this study: (a) the deep neural network (DNN) model, (b) the
convolutional neural network (CNN) model, and (c) the bidirectional long short-term memory (LSTM) model. Parameters of
each layer are highlighted in blue.

annotated seizure start and stop time points. There is
no consistent definition of preictal phases in the lit-
erature, and the occurrence of preictal characterist-
ics may differ across patients. In this work, we used
the 3 min of recordings that are 30 s prior to each
seizure’s start time as the preictal phases. It should be
noted that preictal characteristics could happenmuch
earlier than this period [30]. Interictal segments were
selected at least 2 h before and after any ictal phase
to avoid potential signal contamination [31]. An even
longer interval between ictal and interictal segments
up to 4 h may further improve the classification per-
formance [9, 32]. Unfortunately, the recordings of
those phases are not always available in the chosen
database. Postictal recordings were not used in this
study.

The recordings from the interictal and preictal
phases were much longer than the ictal phase. If all
data segments were used in training, the severe imbal-
anced class distribution would cause a bias in the

model’s prediction [33]. We adopted two methods
to address this issue. First, we generated more ictal
segments by sliding the window with an overlap of
50% [31]. Second, we applied a class weight to the
loss function [3]. Interictal segments were randomly
selected during day and night to avoid overfitting to
irrelevant activities.

2.2. Deep learning models
We investigated threeDLmodels for the seizure detec-
tion task: (a) a deep neural network (DNN) model,
(b) a convolutional neural network (CNN) model,
and (c) a bidirectional long short-term memory
(LSTM) network model. The architectures of the
three models are illustrated in figure 2. Although
the model training was patient-specific, each model’s
architecture and parameter settings were kept the
same for all patients in the database. The design
details are presented in the following sections.
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2.2.1. Deep neural network (DNN)
DNN is a type of feedforward artificial neural net-
work that consists of multiple layers. Each layer con-
tains many processing units, namely artificial neur-
ons. The processing function of each neuron is given
in the appendix. By connecting these neurons, DNNs
emulate the way the brain processes information.
Each neuron’s output is processed by an activation
function. In this work, the rectified linear unit (ReLU)
function is used in all models [34]. Conventional
artificial neural networks often use nonlinear activ-
ation functions, such as hyperbolic tangent and sig-
moid. However, these functions make gradient-based
training challenging as the number of network layers
increases, an issue known as the gradient vanishing
problem [35]. The introduction of the ReLU func-
tion overcomes this limitation by preserving the lin-
ear properties of positive values for gradient-based
optimization, while still providing nonlinearity by
setting all negative values to zero [34]. Moreover, the
ReLU function is computational friendly, which is
important for the purposes of this work.

Our DNN model consists of a scaling layer, a
flat and concatenation layer, followed by five layers
of fully-connected (FC) neurons. The scaling layer
removes the DC offset from each channel and linearly
scales the input data based on the dynamic range. The
FC layers form a pyramid shapewithN neurons in the
first layer, where N is the length of the input segment
of one channel. A 50%dropout layer is inserted before
each of the first two FC layers. The class (ictal, preictal,
or interictal) that has the highest activation function
value is the final classification result.

2.2.2. Convolutional neural network (CNN)
CNNs have achieved extensive success in visual image
recognition and natural language processing [36, 37].
Using CNNs in seizure detection tasks has also been
reported [31, 38, 39]. Convolutional (Conv) layers
can be trained to automatically extract underlying
features that best represent the data without human
intervention. Given their superior ability in extract-
ing features from images, past studies have converted
time-domain EEG segments into spectrograms to be
used as the CNN inputs [31]. However, the compu-
tational costs of the Fourier or wavelet transform of
multiple EEG channels are prohibitive for real-time
applications using low-power MCUs. In this work,
we used Conv layers to extract features directly from
time-domain EEG signals.

Instead of using 2D standard Conv filters, we
used 1D Conv filters to process each EEG chan-
nel. This allowed us to reduce the model size and
computational cost, while still preserving the most
important features [3]. Our CNN model consists of
three Conv layers, all using ‘same’ padding and stride
= 1. Each of the first two Conv layers consists of four

kernels with a length of fs/2, where fs is the sampling
rate of the input EEG signal. The third Conv layer
consists of two kernels with a length of fs/4. A max-
pooling layer with a length of 4 was added to each of
the Conv layers. Themax pooling was used to prevent
overfitting while reducing the computational costs. A
25% dropout layer was inserted after each of the first
two Conv layers to regularize the model. The outputs
of the Conv layers were concatenated and processed
by three FC layers.

2.2.3. Long short-term memory network (LSTM)
LSTM is a type of recurrent neural network (RNN).
In contrast to the feedforward neural networks
described above, a RNN has recurrent connections
that are suitable for capturing sequential information
in the data. In particular, gating functions are used in
each cell of the LSTM layers to control precisely what
information is to be kept in the network andwhat is to
be removed. Thus, LSTM has an inherent advantage
in extracting certain temporal characteristics in time-
domain signals [40], which is crucial in tasks such as
seizure detection.

In this work, we adopted a bidirectional LSTM
network. Bidirectional LSTM networks process
sequential information from two opposite directions
simultaneously, which has proven useful in applic-
ations such as speech processing [41]. For the gate
activation function, we used hard-sigmoid instead of
sigmoid to avoid the exponential operation, and we
used softsign as the state activation function. The pro-
cessing and activation functions of the LSTM model
are given in the appendix.

We adopted a topology that combines an input
Conv layer with the bidirectional LSTM layers. One
kernel with a length of fs/2 was used in the Conv layer,
followed by a max-pooling layer with a length of 4.
A 50% dropout layer was inserted between the input
Conv layer and the bidirectional LSTM layers. Each
of the bidirectional LSTM layers consists of 128 cells.
Finally, FC layers convert the outputs for classifica-
tion.

2.2.4. Sliding window based weighted majority voting
Short data segment based classification often suffers
from a trade-off between sensitivity and FPR [4].
Since not every single data segment in the preictal
phase exhibits signal characteristics that are related
to an oncoming seizure, there is usually a limita-
tion of the achievable classification accuracy before
model overfitting. To achieve a high sensitivity while
minimizing the FPR, we propose a novel sliding
window based weighted majority voting (WMV)
algorithm. The algorithm was implemented for real-
time operation, as described in the pseudo-code of
algorithm 1.
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Algorithm 1: Sliding window based WMV algorithm.

Inputs: Pred_Seg [ 1 :M ]∈{ Ictal, Preictal, Interictal}, ;
M: total segments in the win,

Parameters : αI,P, βI,P, and θI,P
Output: Pred_Event ∈ {Ictal, Preictal, Interictal}

1 Initialization:
2 Score [ Ictal ]← 0, Score [Preictal ]← 0,

Score [ Interictal ]← 0
3 Acc [ Ictal ]← 0, Acc [Preictal ]← 0
4 Pred_Event← Interictal;
5 for i← 1 toM do
6 switch based on Pred_Seg [ i ] do
7 case Ictal do
8 Score [ Ictal ]←+= αI +βI ·Acc [ Ictal ]
9 Acc [ Ictal ]←+= 1, 10

Acc [Preictal ]← 0
10 end
11 case Preictal do
12 Score [Preictal ]←+= αP +βP·

Acc [Preictal ]
13 Acc [Preictal ]←+= 1, Acc [ Ictal ]← 0
14 end
15 case Interictal do
16 Acc [ Ictal ]← 0, Acc [Preictal ]← 0
17 end
18 end
19 if Score [ Ictal ]> θI
20 Pred_Event← Ictal
21 Break;
22 else if Score [Preictal ]> θP
23 Pred_Event← Preictal
24 Break;
25 else
26 Continue;
27 end
28 end

The algorithm uses the DL model’s
segment-based classification results as inputs. The
evaluation is based on a sliding window of M seg-
ments. A score for the present window to be in an
ictal phase is calculated based on two weighted terms:
(a) how many individual segments generate a classi-
fication result of ictal phase, weighted by a coefficient
of αI , and (b) how many times the ictal classifica-
tion repeats in a row, weighted by a coefficient of βI .
The score for the present window to be in a preictal
phase is estimated in an equivalent way, based on the
two terms corresponding to preictal phases, weighted
by coefficients αP and βP. Finally, two pre-defined
thresholds θI and θP are used to determine the final
classification result from the sliding window. Once a
score crosses the threshold, the algorithm will mark
the event and break from evaluating the current slid-
ing window. This is mainly to avoid delays during
real-time seizure detection. A new evaluating sliding
window starts immediately after the previous win-
dow terminates. Compared with traditional majority
voting or moving average based algorithms, the pro-
posed algorithm favors a prediction if the same classi-
fication results appear in a continuous manner. This
significantly reduces the FPR in the classification.

Moreover, the detection latency is not limited by the
sliding window length as the algorithm terminates
once the thresholds are crossed.

2.3. Model compression and quantization
For the models to be successfully deployed in a MCU,
we applied compression and quantization techniques
to reduce the computational cost. There are exist-
ing channel pruning techniques for reducing model
dimension without retraining with data [42]. How-
ever, since our model architectures are compact, the
most effectivemethod of compression is through iter-
ations of retraining.

To select the most informative channels as the
model inputs, we ranked all available recording chan-
nels based on the line length feature of these chan-
nels during the ictal phase. Line length is a measure
of both high amplitude and high-frequency content
of a time-domain signal, and is proven to be among
the most effective features of seizures [43, 44]. It is
computed as:

fL(xi) =
1

N

N−1∑
t=1

|xi(t− 1)− xi(t)| (1)

where xi(t) is the EEG signal of channel i at time t,N is
the sample count of the ictal segment. The line length
feature was only computed offline for channel rank-
ing. It was not used in real-time seizure detection.
Based on the channel ranking, the top K channels
were used as the inputs for the models. The classific-
ation performances using different K were compared
for determining the optimal channel set. Similarly, we
compared the performance using different data seg-
ment length N.

Computing a DL model using high arithmetic
precision does not necessarily improve performance
[45]. Quantization of high precision coefficients not
only saves the computational cost, but also reduces
the memory cost for storing the coefficients. In fact,
loading the coefficients from memory to the arith-
metic unit can dominate the energy consumption in
a microprocessor [46]. In this work, we quantized all
coefficients to 8-bit fixed-point numbers. To evaluate
the effects of model quantization, the performance of
8-bit quantized models was compared to that of 16-
bitmodels (referred to hereafter as unquantizedmod-
els). Together with the computationally efficient non-
linear activation functions (appendix equations (7),
(14) and (15)) used in the model, the computational
cost and latency were reduced.

2.4. Training and testing methods
The DL models were trained by supervised learning
using the annotated data segments. Adam optimizer
was used in training all of themodels [47]. The exper-
iments for model compression and quantization were
performed in a 10-fold cross validation (CV). We
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used stratified CV where each fold has equal num-
ber of instances for each class. The number of seg-
ments depends on the available ictal onset time in
each subject’s recording, and the data segment length.
The total data segments used during the 10-fold CV
were less than 1% of the whole recording per subject.

After finalizing the model architectures, we eval-
uated the performances using a variant of the leave-
one-out cross validation (LOOCV). For a subject’s
recording that contains K seizure events, the record-
ing is divided into K sections with one seizure event
in each of them. One section is used for validation
and the rest K − 1 sections are used for training.
The process is repeated K times so that all data is
used exhaustively for validation. LOOCV suffers from
large variation when K is small [48]. In this work,
we evaluate cases in the CHB-MIT that have at least
five seizures in the recording, which lead to 15 cases
including chb01, 03, 05, 06, 08, 10, 12–16, 18, 20, 23
and 24. Unlike the segment based 10-fold CV, the
LOOCV is performed in a continuousmanner in real-
time using the sliding WMV algorithm.

Standard classification metrics were used, includ-
ing accuracy, sensitivity, specificity, and FPR:

Sensitivity=
TP

TP+ FN
(2)

Specificity=
TN

TN+ FP
(3)

Accuracy=
TP+TN

TP+TN+ FP+ FN
(4)

FPR (h−1) =
FP

Total recording length (in hours)
(5)

where TP, TN, FP, and FN are true positive, true
negative, false positive, and false negative detection,
respectively. During the segment-based evaluation,
results were directly compared with the annotated
labels. For event-based seizure detection, wemade the
following definitions:

(a) If a detection event happens within 5 s of the
seizure start time, it is considered as a TP. There
can be at most one TP per genuine seizure.

(b) If no detection event happens within 5 s of the
seizure start time, it is considered as a FN. There
can be at most one FN per genuine seizure.

(c) If a detection event happens earlier than 5 s of
the seizure start time, or 5 s after the seizure end
time, it is considered to be a FP. The FP count is
not limited by the number of seizures.

Similarly, wemade the definitions for event-based
seizure prediction as follows:

(a) If a warning alert happens within 40 min before
the seizure start time, it is considered as a TP.
There can be at most one TP per genuine seizure.

(b) If nowarning alert happenswithin 40min before
the seizure start time, it is considered as a FN.
There can be atmost one FNper genuine seizure.

(c) If a warning alert happens earlier than 40 min
before or after the seizure start time, it is con-
sidered to be a FP. The FP count is not limited
by the number of seizures.

MATLAB® was used for data handling. The DL
models were implemented in Python with Tensor-
flow, which is an open-source machine learning lib-
rary developed by the Google Brain team [49]. The
DL training was performed on Google Cloud clusters
using tensor processing units.

2.5. Hardware implementation
After training, the compressed and quantized models
were deployed on a low-power MCU. We used a 32-
bit ARM® Cortex-M4 based MCU nRF52840 from
Nordic Semiconductor [50]. The nRF52840 features a
flash memory size of 1 MB and a RAM size of 256 kB.
TheMCU runs at a clock rate of 64MHz. The Cortex-
M4 core supports multiple types of hardware multi-
plication in one clock cycle, including 16-bit signed
multiplicationwith 32-bit results [51]. The integrated
floating-point unit was not used in this work.

The trained DL models were implemented in
C/C++ for programming the MCU. The code was
developed using Keil® MDK [52]. Open-source and
commercial tools can be used to assist the code con-
version from trained DL models to embedded sys-
tems [53, 54]. The neural signal acquisition process
was not implemented in this work. Instead, the integ-
ratedUSB 2.0 full speedmodulewas used for transfer-
ring the recorded EEG data from the computer to the
MCU. The input data segments were buffered in the
RAM. The direct memory access module was used for
transferring the data so that the CPU was not inter-
rupted [55]. The inference results were returned to
the computer via the same USB interface.

3. Results

3.1. Model optimization
Three DL models were trained on all 24 cases (from
23 patients) in the CHB-MIT database. Models were
not quantized during the training and optimization
phase. The input channels were selected among all
available EEG channels for each patient using the
proposed line-length based ranking (equation (1)).
Figure 3(a) shows the classification performance of
each model using 1, 5, 9, 13, or 18 channels as the
inputs. The segment length was chosen to be 1 s (256
samples) in this analysis. The experimental result sug-
gests that the optimal channel count is different for
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Figure 3.Model optimization during 10-fold CV. Each model’s segment-based classification accuracy is plotted with error bars
showing 95% confidence interval. (a) Using 1, 5, 9, 13, or 18 EEG channels as the inputs. The channel selection was based on the
line-length ranking algorithm. The segment length was 1 s. (b) Using segment lengths of 0.25 s, 0.5 s, 1 s, 2 s, or 4 s. The number
of input channels for the DNN, CNN, and LSTMmodel was 5, 9, and 9, respectively.

each model. Given the existing model size and exper-
imental setup, the DNNmodel can take nomore than
five channels before it fails to extract critical inform-
ation. More channels were generally helpful for the
CNNmodel, but the performance improved margin-
ally beyond nine channels. The LSTMmodel reached
peak performance at 9 and 13 channels, while more
channels only caused additional variance.

Segment length is another key parameter that
impacts the overall performance as well as the com-
putational cost. Figure 3 (b) shows the classification
performance of eachmodel using a segment length of
0.25 s, 0.5 s, 1 s, 2 s, or 4 s The ictal segments were
generated with 50% overlap in all cases. In the DNN
model, using five channels as the input, the optimal
performance was obtained with a segment length of

0.5 s. In the CNN model, using nine channels as the
input, the optimal performance was obtained with a
segment length of 1 s. In the LSTMmodel, also using
nine channels as the input, the optimal performance
was obtained with a segment length of 2 s.

We targeted the optimal performance of each
model that the hardware resources permit. In cer-
tain model configurations, using more channels as
inputsmay reduce the segment size for achieving sim-
ilar performance. Depending on the system’s require-
ment and the available hardware resources, one may
prefer to use more input channels or a larger segment
size. In practice, more input channels require more
wearable/implantable electrodes and corresponding
recording hardware, such as low-noise neural ampli-
fiers. On the other hand, a larger window size requires
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Figure 4. Performance of segment-based stage classification
accuracy of each model. DNN_uq, CNN_uq, LSTM_uq are
the unquantized models. DNN, CNN, and LSTM are the
quantized models. The box tops indicate 75th percentiles,
box bottoms indicate 25th percentiles, solid lines indicate
medians, whiskers indicate the span of the data, and dots
show data points (from all 24 cases).

more model coefficients thus more memory and
RAM resources, and may cause a systematic latency.
It should also be noted that increasing the segment
length reduces the number of training and testing
data segments, especially for patients with short ictal
phases (e.g. 6-9 s in chb16). This could be a limit-
ing factor in training DLmodels using a limited data-
base. The hyperparameters used for training should
be carefully tuned to minimize the impact.

Figure 4 shows the segment-based classification
accuracy of each model. The DNN_uq, CNN_uq,
and LSTM_uq indicated in the figure are the 16-bit
unquantized models, while DNN, CNN, and LSTM
are the 8-bit quantized versions. The average per-
formance degradation due to quantization was less
than 0.5%. The LSTMmodel achieved the best overall
performance (90.94%), followed by the CNN model
(89.21%). The performance of the DNN model was
relatively poor (64.55%).

To compare the classification performance with
non-DL algorithms, we constructed a linear discrim-
inant analysis (LDA) classifier. Spectral amplitudes in
selected frequency bands were used as the input fea-
tures. The LDA classifier was chosen because it has
been used in the Medtronic Activa PC+S device [4].
The selected frequency bands were 0–2.7 Hz, 2.7–5.4
Hz, 5.4–10.8 Hz, 10.8–21.7 Hz, 21.7–43.4 Hz, and
43.4–86.8 Hz [56]. Table 1 shows the segment-based
classification accuracy, sensitivity, and specificity of
the LDA classifier and the three DL models for 10-
fold CV. The DLmodels achieved better performance
than the LDA classifier. Among the three DL models,
the CNN and LSTM models showed superior overall

performance, while the DNN model had a limited
ability in discriminating the preictal and ictal phases.

3.2. Model performance evaluation
Real-time seizure event detection and prediction
using the trained, quantized DL models were sim-
ulated by streaming the selected EEG time series
to the MCU in a continuous manner. Figure 5
shows an illustrative example of the inferred scores
of ictal (Score [Ictal] in algorithm 1) and preical
(Score [Preictal] in algorithm 1) phases calculated by
each model at each instance in time. The selected
input EEG channels for the CNN and LSTM models
are shown at the top of figure 5. Only the upper five
channels were used as inputs to the DNN model. All
three models successfully detected the seizure event
within a 5 s window around the marked start time
(figure 5(a)). Furthermore, all three models success-
fully predicted the seizure within a 40 min horizon
prior to the actual onset time (figure 5(b)). In this
example, the CNNmodel showed the best robustness
against false positives in predicting seizures.

The performance of event-based seizure detec-
tion and prediction was tested with LOOCV. The per-
formance of the WMV algorithm was compared with
a traditional moving average. The WMV algorithm
improved the seizure detection FPR from0.745 h−1 to
0.169 h−1 and the seizure prediction FPR from 2.341
h−1 to 0.710 h−1. Figure 6 shows the box chart of
each model’s performance in seizure detection and
prediction tasks in LOOCV. For seizure detection, the
LSTM model achieved the highest average sensitivity
(97.61%) and the lowest FPR (0.071 h−1), which cor-
responds to one false alarm in every 14.1 h. For seizure
prediction, the LSTM and CNN models achieved a
comparable sensitivity above 90%. The CNN model
had a better average FPR (0.204 h−1), which corres-
ponds to one false alarm in every 4.9 h. The perform-
ance of the DNNmodel was relatively poor in seizure
prediction tasks. The average andmedian sensitivities
and FPRs of each model are summarized in table 2.

Finally, each model’s memory size, inference exe-
cution time, and power consumption are shown
in figure 7. The results before and after quantiza-
tion were plotted for comparison. The memory size
reflects the actual hardware implementation includ-
ing the code overhead for data handling. The data
transfer time via the USB port was excluded from
the inference time since this would not be present
in autonomous neural implants. The CPU core was
put in sleep mode after executing the inference, and
the power consumption was measured directly from
the power supply. The reported power consump-
tion is an average within the segment period. The
DNN model required the largest memory size, while
the CNN model required the least. This is mainly
because of the limited convolutional kernel size used
in the CNNmodel. The LSTMmodel had the longest
inference time, but it was still within its segment
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Table 1. Segment-based classification in 10-fold CV using quantized models.

LDA DNN CNN LSTM

Overall accuracy 62.07% 64.55% 89.21% 90.94%
Sensitivity Ictal 83.67% 82.52% 96.59% 97.30%

Preictal 49.24% 51.83% 88.22% 91.46%
Interictal 55.53% 60.66% 83.67% 85.33%
Avg. 62.81% 65.00% 89.50% 91.53%

Specificity Ictal 83.05% 88.89% 97.79% 98.68%
Preictal 73.55% 75.29% 90.47% 91.58%
Interictal 74.94% 83.75% 96.32% 97.00%
Avg. 77.18% 82.64% 94.86% 95.75%

Figure 5. The detection and prediction of one seizure event of patient chb01 using the three DL models and sliding WMV
algorithm. The genuine seizure occurred at 2:13 pm as annotated by clinical experts. Selected EEG channels used by the models
are shown at the top (the DNN model used only the upper five channels). The scores of ictal (a) and preictal (b) phases calculated
by the WMV algorithm are plotted. The normalized score is coded by color, with dark blue being the lowest and dark red being
the highest. The earliest detection of each model is marked with a red arrow.

period. From the perspective of power consumption,
the DNN and CNN models were comparable, while
the LSTMmodel consumed the most.

4. Discussion

Each of the three DL models developed in this work
has its own strengths and weaknesses. The DNN
model achieved the shortest inference time with
minimum power consumption. The CNN model
achieved a balanced performance with moderate
power consumption and the smallest memory cost.
The LSTM model achieved the best overall perform-
ance (e.g. highest seizure detection sensitivity and
lowest FPR) at the expense of relatively long infer-
ence time and high power consumption. The optimal
choice of model mainly depends on the specific
application as well as the available hardware resources
of the neural implant, including the batteries.

Model quantization improved inference time,
memory size, and power consumption without
sacrificing inference performance.On the other hand,

model compression and channel pruningmay require
iterations of retraining. Layer size should be scaled
with the sampling rate for capturing temporal fea-
tures. Cascading DL models with a second stage
sliding window-based algorithm, such as the slid-
ing window based WMV algorithm implemented
in this work, may compensate for the limitation of
small input data buffer size of the edge DL models.
Optimizing the design jointly for available hardware
resources and real-time operational requirements is
the key to achieving a satisfactory overall perform-
ance.

For event-based seizure detection, the CNN and
LSTM models achieved an average high sensitivity
of 96.7% and 97.61%, and low FPR at 0.102 and
0.071, respectively. The results suggest that they are
potential candidates for real-time, closed-loop thera-
peutic systems. For seizure prediction, the perform-
ance of the DNN model was limited. We compare
the seizure prediction performance of this work with
prior studies (table 3). Importantly, most of the listed
studies assumed no time and computational resource

10
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Figure 6. Performance of event-based seizure detection ((a-1) and (a-2)) and seizure prediction ((b-1) and (b-2)) in LOOCV.

Table 2. Performance of event-based seizure detection and prediction in LOOCV.

Detection Prediction

Sensitivity FPR (h−1) Sensitivity FPR (h−1)

Avg. Median Avg. Median Avg. Median Avg. Median

DNN 87.36% 85.71% 0.169 0.140 76.66% 75.00% 0.710 0.474
CNN 96.70% 100% 0.102 0.084 90.66% 90.00% 0.204 0.168
LSTM 97.61% 100% 0.071 0.063 90.72% 90.00% 0.241 0.227

Figure 7. Each deep learning model’s (a) memory size, (b) inference execution time, and (c) power consumption. DNN_uq,
CNN_uq, LSTM_uq are the unquantized models. DNN, CNN, and LSTM are the quantized models.
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limitations. The highest performances were achieved
at the cost of sophisticated, hand-crafted, patient-
specific feature engineering [9]. However, such com-
plicated processing typically prevents its application
in embedded devices for real-time, closed-loop infer-
ence. The relatively good hardware-based seizure pre-
diction performance of our CNN and LSTM mod-
els compared to prior software implementations
provides support for their use in future therapies.

One caveat to seizure prediction is that more
advanced notice is not always better, unless a seizure
prediction horizon (SPH), which is a seizure-free
warning period between the alarm and the actual
seizure onset, can be guaranteed by the algorithm
[57]. Otherwise, an early warning may increase the
anxiety of the patient given that a seizure may or
may not happen any time within a long period
after the warning. Including an accurate SPH sig-
nificantly increases the difficulty in prediction [57].
It is not applicable for the light-weight DL models
developed in this work. It should be noted, however,
that the proposed edge DL inference paradigm does
not preclude the functionality of uploading data to
an external system including cloud-based comput-
ing resources for further analysis. Periodical diagnosis
and model updating may be necessary for clinical
adoption. But since these operations are not con-
tinuous during everyday use, data encryption can be
reinforced and the peaking power dissipation during
these short periods is not a big concern.

Another caveat to the results is that the EEG sig-
nals in the selected data set were recorded nonin-
vasively using scalp electrodes. Therapeutic neural
implant devices typically acquire EEG signals intra-
cranially with a much higher signal-to-noise ratio
(SNR) [58]. The performance of DL algorithms typ-
ically improves with higher SNR signals, since more
subtle neural features can be unveiled in these record-
ings [31]. We expect the performance of the models
can be further improved, or the size and power con-
sumption can be reduced if intracranial EEG record-
ings are used as the input.

Although this work uses a general-purpose, off-
the-shelf MCU as the edge hardware platform, the
design and optimization methods are applicable to
ASIC development for clinical neural implants. The
MCU core can be directly integrated into an ASIC
design with the required memory or the models can
be directly synthesized in the register-transfer level
forminimizing the design overhead. Furthermore, in-
memory or near memory computational techniques
can be used to further reduce the power consumption
of repeated multiply-accumulate (MAC) operations
[22, 23]. An ASIC system-on-chip (SoC) that integ-
rates analog neural interfaces (e.g. neural recorders
and stimulators), digital DL inference module, power
management and wireless communication modules
can achieve the optimal power consumption and
device footprint for chronic neural implants.

Finally, neural implants with different clinical
purposes use various types of input neural signals,
inference model complexities, and control strategies.
Our work may serve as a reference for related stud-
ies on cognitivemonitoring, sleep interventions, BMI,
and other applications with closed-loop neuromod-
ulation or neuroprosthetic control. The generaliz-
ability of our edge DL approach depends on the
model complexity required to achieve high perform-
ance in these different applications. While DL model
complexity has been defined in different ways, it
is specifically the speed of inference, along with
memory requirements, that is critical for resource-
restrained edge devices [59]. To assess generalizab-
ility, we sought to compare our models’ inference
speed with that of a sample of prior DL studies in
different neural application domains. Elapsed infer-
ence time (figure 7(b)) is rarely reported and is
hardware dependent. A hardware-independentmeas-
ure is the number of required computations (i.e.
MAC operations) based on model architecture [60].
Restricting the comparison to CNN models, which
are used in the majority of neural applications [5],
the total number of operations in the Conv and FC
layers provide a reasonable estimate of complexity
(see appendix). Our CNNmodel required approxim-
ately 2.4 M MACs to process the 256× 9 input mat-
rix. This complexity is higher than many prior CNN
models used for BMI applications like P300 detec-
tion [61], steady-state evoked potential classification
[62], and attentive state detection [63], which ranged
from about 0.1 M to 0.5 M MACs. Although CNN
models for other tasks like sleep scoring [64] can be
significantly more complex, on the order of 10 M to
100 M MACs, we suggest that edge DL systems are a
realistic option for many BMI applications. Since DL
eliminates the domain-specific manual feature selec-
tion used in conventional algorithms, research pro-
gress and technological advancement in one specific
application area should readily generalize to other
applications.

5. Conclusion

In this work, we developed edge DL models and
investigated their potential utility for future clin-
ical applications involving neural implants. We adop-
ted three commonly used DL architectures (DNN,
CNN, and LSTM) and optimized the models for
deployment in resource-restrained hardware. Using
the CHB-MIT database, we show that edge DL infer-
ence can achieve comparable performance in epileptic
seizure detection tomany prior implementations that
had no time and computational resource limitations.
Our results suggest that edge DL inference is a prom-
ising option for closed-loop neuromodulation, with
superior robustness and security compared to wire-
less communication-based solutions. While clinical
studies are needed to confirm the efficacy of this
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paradigm, this work demonstrates the feasibility and
potential advantages. We envision that the next gen-
eration of clinical neural implants could leverage edge
DL inference to greatly improve their therapeutic
benefit.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Processing and activation
functions

In the FC layers, the processing function of each
neuron j is given by:

yj = fR

(
n∑

i=1

wj,i · xi + bj

)
(6)

where xi is from the previous layer, wj,i is the weight
factor, bj is the bias term, n is the number of neur-
ons in the previous layer, and f R(x) is the activation
function. The f R(x) used in this work is the rectified
linear unit (ReLU) function. ReLU is a piecewise lin-
ear function as given by:

fR(x) =max{0,x}. (7)

The processing functions of each LSTM cell j are
given by:

fj = fG(Wh,f,j · hj−1 +Wx,f,j · xj + bf,j) (8)

ij = fG(Wh,i,j · hj−1 +Wx,i,j · xj + bi,j) (9)

oj = fG(Wh,o,j · hj−1 +Wx,o,j · xj + bo,j) (10)

c̃j = fS(Wh,c,j · hj−1 +Wx,c,j · xj + bc,j) (11)

cj = fj · cj−1 + ij · c̃j (12)

hj = oj · fS(cj) (13)

where xj is the output from the previous layer, hj is the
hidden state, cj is the memory state (c̃j is the candid-
ate), ij is the input gate, oj is the output gate, and f j
is the forget gate.W ’s and b’s are the weight and bias
terms for each neuron in the LSTM cell.

The gate activation function f G(x) is given by:

fG(x) =max

{
0,min

{
1,

x

5
+

1

2

}}
. (14)

The state activation function f S(x) is given by:

fS(x) =
x

1+ |x|
. (15)

A.1. Multiply-accumulate operation estimates
The number of MAC operations for a CNN can be
estimated as follows. For FC layers:

#MACfc = Cin ×Cout (16)

where Cin is the number of input channels (neurons)
and Cout is the number of output channels. For Conv
layers:

#MACconv = Cin ×mout × nout ×Cout × h× v
(17)

where mout × nout is the size of the output feature
map, Cout is again the number of output channels
(equivalent to the number of kernels), and h× v is the
size of each kernel. Max pooling and activation oper-
ations are ignored as they typically contribute very
little to the total MAC count.
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